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Introduction
ODE based models of biological systems are used frequently by 
theoretical biologists.  These systems can have stable and unstable 
steady states and oscillations.  This poster presents a method to find 
all steady state solutions to a restricted class of ODE models. The 
right hand sides of the models are restricted to linear combinations 
of rational functions of variables and parameters.  The method 
converts the steady state equations into a system of polynomials
equations and runs POLSYS_PLP [3] to find all the roots of the 
system of polynomials.  All the steady state solutions will be present 
as roots of the polynomial equations.  There may be some roots that 
do not correspond to steady state solutions because of the 
conversion.  Therefore, the roots of the polynomial equations must be 
checked in the steady state equations.  The stabilities of the steady 
states are not revealed.  This poster explains the methods used and 
gives the results of an example problem.

As an example, all the steady states were found for a model of frog 
egg extracts [2].  The steady states were verified independently in 
XPP [1].

Example Problem
Fig. 1 shows the network of the example problem from Marlovits [2].  
The equations derived from that network are

Fig. 1.  Network of proteins for the 
example frog egg model.

where M is active MPF, D is active Cdc25, and W is active Wee1.

Method
First, set up the steady state equations by setting the right hand 
sides equal to zero. Second, multiply each equation by a constructed 
polynomial to eliminate the denominators.  Note here that the steady 
states are preserved because multiplying a zero will give you a zero.  
Multiplying through by a polynomial may add extraneous steady 
states.  Third, run POLSYS_PLP to find the roots of the resulting 
system of polynomial equations.  Last, verify the steady states by 
plugging the answers into the steady state equations.

The example problem yields the steady state equations
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and the constructed polynomials are

respectively.  The resulting system of polynomial equations is

POLSYS_PLP was run on the above system of polynomials with 
constant parameters as given in Marlovits [2].  CT was varied from –1 
to 1 and all the steady states were returned with a step size of
0.002.

Results
Several steady states were verified by plugging the results into the 
steady state equations.  All the steady states checked were verified.

All the steady state values for active MPF were verified by tracking 
the steady states using XPPAUT [1].  The graphs of the steady states 
found by the methods described in this poster are in Fig. 2.  On top 
of those steady states are the steady states tracked by XPPAUT. 
Note that XPPAUT cannot find a steady state.  XPPAUT must start 
with a steady state, and it can then track the steady state over the 
range of a parameter (i.e., CT).

Conclusion
An algorithm was developed for finding all steady states in a 
restricted class of ODE based models.  The algorithm was tested and 
verified to work on a test case.  The algorithm will be tried on many 
more real world models and the steady states checked.

This is a revolutionary tool for theoretical biologists.  It provides a 
means to show a model has steady states not previously known or to 
prove there are no more steady states than the ones known.  This tool 
is very powerful in so far as it allows the theoretician to make
powerful predictions that can be tested experimentally.

POLSYS_PLP
POLSYS_PLP finds solutions to systems of polynomial equations using 
homotopy mapping.  POLSYS_PLP creates a system of polynomials 
with known roots and “morphs” that system into the system specified 
by the user.  The “morphing” is a process of tracking curves 
(homotopy curves) from the start system to the target system.  Each 
curve represents a solution, therefore the start system must be 
similar to the target system (i.e., the two systems must have the 
same number of roots).

Fig. 2.
The values of 
MPF that solve 
the steady state 
equations for a 
range of total 
cyclin values.


