Estimating Rate Constants in Cell Cycle Models

Jason W. Zwolak*, John J. Tyson**, and Layne T. Watson*
Departments of Computer Science* and Biology™**
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061-0106
e-mail: jzwolak@vt.edu

Keywords: Computational biology, ordinary differen-
tial equations, parameter estimation

Abstract

Cell cycle models used in biology can be very complex.
These models have parameters with initially unknown
values. The values of the parameters vastly affect the
accuracy of the models in representing real biological
cells. Typically people search for the best parameters to
these models using computers only as tools to run the
models. In this paper a method and results are described
for a computer program that searches for parameters
to a specific model. The code for this program uses
ODRPACK for parameter estimation and LSODAR to
solve the differential equations that make up the model.
The resulting parameters fit the experimental data with
a total relative error of 2.11 x 1072,

1. INTRODUCTION

Computational models of cell growth and division
involve digital representation of a complex network of
biochemical reactions within cells. These reactions can
be described by a system of nonlinear ordinary differen-
tial equations, according to the principles of biochemical
kinetics. Rate constants and binding constants enter
as parameters in the differential equations, and must
be estimated by fitting solutions of the equations to
experimental data.

This work concerns some classical experiments on
activation of MPF (M-phase promoting factor) in frog
egg extracts. MPF is a dimer of cyclin and Cdc2 (a
protein kinase that drives egg nuclei into mitosis). In
the experimental preparation, a fixed amount of cyclin
is added to an extract containing an excess of Cdc2 sub-
units. If the amount of cyclin added is below a threshold,
MPF activity never appears. Above the threshold, MPF
is activated but only after a characteristic time lag.
The time lag decreases abruptly as total-cyclin-added
increases above the threshold. The goal is to fit this data
with a reasonable model of the underlying biochemistry,
which keeps track of cyclin monomers, Cdc2 monomers,
and the phosphorylation state of cyclin/Cdc2 dimers.

ODRPACK, based on the orthogonal distance be-
tween experimental data and the model, is used for
the nonlinear regression to estimate the unknown rate
constants (ODE parameters). The ability of this algo-
rithm to arbitrarily weight data values, and to treat
both the abscissa and ordinates as uncertain, is crucial,
given the sparsity and uncertainty of available biological
data. Constructing the model function values requires
simulating MPF activity as a function of time after
addition of cyclin. These simulations yield the cyclin
threshold for MPF activation, and the time lag (the
time necessary for MPF activity to reach one-half of its
asymptotic value, for supra-threshold stimulation).

The complete calculation is expensive, because the
ODEs are stiff, and must be solved numerous times for
the nonlinear regression. Also, because of local minima,
the nonlinear regression must be done from many start-
ing points to adequately explore the parameter space.
Potential sources for parallelism are the ODE solution
itself, the estimation of partial derivatives of the ODE
solution, and multiple starting points for regression.
Numerical results are presented for a relatively simple
two-component model, as well as scalability results
for shared memory and distributed memory parallel
computers.

To study realistic models of cell cycle control, more
components must be added to the model, and other mea-
surable phenomena incorporated in the cost function. As
the modeling fidelity is increased, the mathematical and
computational complexities of the problem grow rapidly.
Efficient and accurate tools for parameter estimation will
be needed to build computational models of the complex
control networks operating within cells, which is one of
the main goals of bioinformatics in the postgenomic era.

Section 2 outlines the biological model and pro-
vides the experimental data. An overview of the code
along with descriptions of the tools (ODRPACK and
LSODAR) used by the code can be found in Section 3.
Section 4 contains a more detailed pseudocode for the
algorithm. The results of the parameter estimation are
in Section 5.



2. PROBLEM STATEMENT

The differential equation describing the concentra-
tion and rate of change in active MPF in a frog egg with
a fixed concentration of total cyclin is

dM
Gr = FueeM o+ (kas + Ko M?)(C - M),

where kyee, ka5, and kby are rate constants, C' is
concentration of total cyclin, and M is the concentration
of active MPF versus time [13].

In cells, MPF is the primary protein that determines
when the cell divides. However, MPF does not promote
cell division unless MPF is active. Other proteins in
the cell inhibit or promote MPF activation. The most
dominant proteins in this model are Cdc25 and Weel.
Weel deactivates MPF and the rate constant kyee
represents Weel’s affect on MPF inactivation. Cdc25
activates MPF and the rate constants ko5 and kjy
represent Cdc25’s affect on MPF activation [13].

This paper describes the methods and results of
estimating the rate constants Kyee, k25, and kbs. Es-
timating kyee, k25, and kj; requires experimental data
related to the ODE. The available data is in Table 1.

Table 1. Experimental data [8]

Total Cyclin Time Lag (min)
0.15 55
0.20 45
0.25 40
0.30 30
0.50 20

The time lag appears in the ODE as the point where
the active MPF concentration is half its asymptotic
value. For low concentrations of total cyclin, MPF never
activates (i.e., the concentration of active MPF never
rises above half the concentration of total cyclin). For
higher concentrations of total cyclin MPF activates after
some time lag. The higher the concentration of total
cyclin the smaller the time lag. This behavior can be
seen in the experimental data in Table 1 and the plots
in Figure 1.

3. METHODS

The variables that correspond to the data in Table
1 are not all present in the ODE (total cyclin is in the
ODE, time lag is not in the ODE). The first step is to
use the ODE to calculate another function f in terms of
the variables corresponding to the data in Table 1.

Let f(x) be the time lag for total cyclin x, where
time lag is the time for MPF to activate or deactivate
(depending on whether MPF was initially active or
inactive). More precisely the time lag is the time where
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Figure 1. Percent total cyclin in active MPF, M/C,
versus time ¢ for multiple concentrations of total cyclin

the active MPF concentration is the average of the
initial concentration of active MPF and the asymptotic
concentration of active MPF.

LSODAR is used to solve the ODE and to find the
time lag from the solution to the ODE. The time lag
versus total cyclin function f(z) is also a function of
the rate constants in the ODE. This function is used by
ODRPACK to find the rate constants giving the curve
f(z) that best fits the experimental data in Table 1.

3.1. LSODAR

LSODAR is a variant of LSODE ([10], [5], [6])
that automatically switches between stiff and non-stiff
methods and has a root finder. LSODAR starts with
a non-stiff method and switches to a stiff method if
necessary. LSODAR also has a built in root finder, which
is used in this application to find the time lag for MPF
activation.

For non-stiff problems LSODAR, uses Adams-Moul-
ton (AM) of orders 1 to 12. For stiff problems LSODAR
uses backward differentiation formulas (BDF) of orders
1 to 5. With both methods LSODAR varies the step size
and order. LSODAR switches from AM to BDF when
AM is no longer stable for the problem or cannot meet
the accuracy requirements efficiently [9].

The present problem uses LSODAR to solve for
M(t) (the concentration of active MPF with respect to
time). The tolerances are set to 1072 for both relative
and absolute error. A tolerance of 10710 is used when
calculating a root for a function of the form

M(t) - Mroot7
where M,.,0+ is the value of the function M (t) for which
a time, t, is desired.

LSODAR takes, as an argument, a user written
function, GEX, that evaluates equations based on the



variables involved in the ODE that LSODAR is solving.
For this problem GEX evaluates M — M,,,: as men-
tioned earlier. GEX returns evaluations of its equations
to LSODAR and LSODAR looks for roots for those
equations. When a sign change is detected LSODAR
has bracketed a root and begins an algorithm based
on the ROOT function described below. After each
iteration of ROOT, LSODAR must evaluate a point on
the solution curve of the ODE as requested by ROOT.
Each evaluation involves interpolating the ODE solution
M(t). This interpolation formula is defined as part of
the AM [12] or BDF [4] method (depending on which is
currently being used by LSODAR).

3.2. ODRPACK

ODRPACK is used to estimate the rate constants
that fit time lag versus total cyclin to the experimental
data in Table 1. ODRPACK finds an estimate for the
rate constants by minimizing the weighted orthogonal
distance between the experimental data and the calcu-
lated curve.

The present problem explicitly relates time lag to
the total concentration of cyclin in the cell. Precisely,

y = f(z:0),
where y is time lag, = is total cyclin, and 3 is a vector

of the rate constants. ODRPACK takes an equation of
this form and experimental data for z and y to minimize
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where n is the number of experimental data points, €;
is the error in the dependent variable y for point i, ¢; is
the error in the explanatory variable x for point ¢, and
we, and ws, are the weights for ¢; and §;, respectively.

B, 6, and € are subject to the constraints
yi = f(xi + 6 8) — &,
where 7 = 1, ..., n indexes the experimental data points.

ODRPACK actually minimizes a more general ob-
jective function

n
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where €; and §; are vectors for the errors in the de-
pendent variable and errors in the explanatory variable,
respectively. we, and ws, are matrices of weights for ¢;
and 6;, respectively [2] [1]. Note that z and y, from
the previous description of ODRPACK, are vectors and
the function f is a vector-valued function in the general
case. The present problem can be thought of as using the
scalar version of ODRPACK, since the present problem

has we, and ws, as matrices of one element and ¢; and
0; as vectors of one element.

The function f(z + §;0) is implemented in FOR-
TRAN and used by ODRPACK. Constraints are put on
B by setting a flag (when f is invalid) before returning
from the user supplied function. This is used to prevent
the rate constants from becoming negative, which does
not make sense biologically.

ODRPACK wuses a trust region Levenberg-Mar-
quardt method with scaling to minimize the objective
function [2]. In doing so ODRPACK needs to calculate
the Jacobian matrices for 8 and §. ODRPACK can
calculate the Jacobian matrices by finite differences or
by a user supplied routine. Finite differences were used
here.

3.3. ROOT

ROOT is based on ZEROIN [11], which is in turn
based on code by Dekker [3]. ROOT uses a combination
of the secant and bisection methods where the secant
method is used by default. ROOT has two working ap-
proximations of the root: A and B. The approximations
always satisfy the constraint

g9(A) xg(B) <0,
where g(t) = M — M0+ and t is time in this problem
(note that M is dependent on t). Furthermore, A is the
better approximation of the root of g(¢). A is replaced in
each iteration by a better approximation and B remains
the same or changes to the old A, whichever satisfies the
above equation. ROOT switches to the bisection method
under two circumstances: when the secant method is
converging too slowly, or when a large error is introduced
because of limitations in machine precision. Notice the
bisection method will not suffer from large error because
it computes
A+ B
2

for each iteration.

The initial approximations, for A and B, come
from LSODAR’s evaluation of GEX before and after
LSODAR noticed a sign change. ROOT then requests
values for g at new times until the approximation for the
root of g is within the requested relative and absolute
€error.

4. ALGORITHM

In this section the algorithm used is described in
some detail using pseudocode. Many of the function
arguments used with ODRPACK’s subroutine DODRC
and ODEPACK’s subroutine LSODAR do not appear
in the pseudocode. Most of these arguments were
set to default values, and others are not relevant to



understanding the methods used to solve the present
problem.

The main program sets up the input for DODRC
and is as follows:

begin
s := 8; s is the number of significant digits in the
response variable of f.

n := 5; n is the number of experimental data points.

x := (0.15,0.20, 0.25,0.30,0.50); the vector & contains
the total cyclin components of the experimental data.

TR (55, 45, 40, 30, 20); the vector y contains the time
lags corresponding to total cyclin concentrations
from above.

Ws 1= (44.44, 25,16,11.11, 4); ws contains the weights
for the errors in .

we = (3.305-107%,4.938 - 1074,6.25 - 10~*, 1.111 -
1073,2.4 - 1073); we contains the weights for the
errors in y. The weights are the squared reciprocals
of the corresponding data values, which makes all

the errors in the objective function relative instead
of absolute.

8= ((].57 0.06, 80); [ contains the initial guess for the
rate constants. After DODRC has been called 8 will
contain ODRPACK’s best estimate for 3 given the
arguments to DODRC.

DODRC(FCN, n, s, z,y, ws, we, 3, . . .); the ODRPACK
subroutine used is DODRC. FCN is defined below.

end

The function procedure FCN takes concentrations
of total cyclin and parameters to the ODE and returns
time lags for each concentration of total cyclin. ODR-
PACK does not give FCN the total cyclin concentrations
from the experimental data. Instead, ODRPACK gives
FCN the total cyclin concentrations plus some error 6.
In most cases the time lags returned by FCN will not
match the time lags from the experimental data. Errors
in measurements in the experimental data contribute to
this mismatch. ODRPACK handles this by labeling the
output of FCN as y + €. Precisely, let X = x + § and
Y =y +e. FCN takes arguments # and X and returns
Y. The code for FCN follows.

subroutine FCN

for i := 1 step 1 until n do
begin
C := X (7); (set the total cyclin value)
T := 0; (the initial time)
Ry := 10712; (relative error tolerance)
Aior :=10712; (absolute error tolerance)
Mt := 0; (initial MPF concentration)

Tout := 14405 (solve for the MPF concentration at this
time)

Ny := 0; (no roots are desired from LSODAR)

Mznf :LSODAR(FEXa Minit, Ty Tout, Ritol, Atol7
N,, JEX, GEX, ...);

if M,y < C/2 then
Y (i) := 1440; (pseudo-infinite-lag)
cycle;

endif

Moot := Minys/2; (find a root at My, s/2)

N, :=1; (one root is desired from LSODAR)

LSODAR(FEXa Minita T, Touta Rtola Atola Nga JEXa
GEX, ...);

Y (7) := Tous; (the root is returned in Tpy¢)

end

The number 1440, construed as a pseudo-infinite-
lag, is used to put a limit on how long to search for MPF
activation. Effectively, the (computed) curve in Figure
2 will be flat when it reaches 1440 minutes. The true
physical curve continues to increase after 1440 minutes.
This modification creates a curve that does not precisely
match the actual curve, but this modification does not
affect the computation. All the experimental data is
well below 1440 minutes (1 day). ODRPACK looks for
the point on the calculated curve that is closest to the
experimental data when calculating the error. Since the
initial guess is not closer to the horizontal line at 1440
minutes than to the real curve, the flat portion will not
cause ODRPACK to make wrong estimates for the rate
constants.

Subroutine FEX solves for the change in MPF
concentration given MPF concentration, time, values for
the parameters, and total cyclin concentration. Note
that time does not appear directly in the ODE, but
M is dependent on time. FEX is used by LSODAR
when computing M numerically. FEX takes the MPF
concentration M and returns the derivative M; of MPF
concentration with respect to time. JEX computes the
partial derivative P of the ODE with respect to the
dependent variable M, and takes the same arguments
as FEX. LSODAR returns a root for the function G
evaluated in GEX. GEX takes the same arguments as
FEX. Pseudocode for FEX, JEX, and GEX follows.

subroutine FEX
begin

My = —p1M + (B2 + BsM?)(C — M);
end
subroutine JEX
begin

Py = =1 — 2+ 2065CM — 333 M?;
end



subroutine GEX
begin
G1:= M — Myoor; Myroot is set elsewhere to a desired
value of the solution M to the ODE defined in FEX.
end

5. RESULTS

Many variations on the parameters to ODRPACK
have been tried. The best results so far are in Table 2.
These results were obtained using the experimental data
in Table 1 and Figure 2.

Table 2. Optimal rate constants from ODRPACK

Rate Constant Optimal Value
Kwee 1.117-10719
kas 3.277-1073
- 8.719-10°

In Figure 2 the fitted curve was generated from
the rate constants in Table 2. The fit appears good
and the weighted sum of squares of the ¢’s and €’s are
3.039 - 10793 and 1.810 - 10792, respectively. So indeed
the curve fits the given data well. However, currently
the code used does not take into account the thresholds
for MPF activation and inactivation. This curve has
a threshold for MPF activation around or below 0.03.
Experiments estimate the threshold to be about 0.1.
One of the next steps for this problem is to integrate the
empirical thresholds for MPF activation and inactivation
into the code.
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Figure 2. Time lag for MPF activation versus total
cyclin
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